6,776 research outputs found

    Sequence stratigraphy and architectural elements of the Giant Foresets Formation, northern Taranaki Basin, New Zealand

    Get PDF
    The modern continental margin in northern Taranaki Basin is underlain by a thick, mud-dominated, Pliocene and Pleistocene succession (Giant Foresets Formation, GFF) clearly imaged in seismic reflection datasets. A study focusing on the geometry and internal reflection character of the GFF has revealed structural, sedimentological, and eustatic controls on its accumulation. Isopach maps prepared for northern Taranaki Basin show shifts through time in the main loci of sediment accumulation of the Mangaa Formation and Giant Foresets Formation. During the Early Pliocene (Opoitian Stage) deposition was focused in the southern part of the Northern Graben. The progradaĀ¬tional front moved into the vicinity of Arawa-1 and Taimana-on the Western Platform during the early-Late Pliocene (Waipipian and Mangapanian Stages), forming large mounded slope fans. Through the latest Pliocene (Mangapanian - lower Nukumaruan Stages) the progradational front moved rapidly to the north and west through and across the Northern Graben to form a distinct shelf-slope depositional front. During the Pleistocene (upper Nukumaruan Stage ā€“ Recent), the progradational front straightened out, reaching the present position of the shelf-slope break. Even during the Pleistocene, broad subsidence persisted in the Northern Graben, trapping a proportion of the sediment flux being delivered to this part of the basin. The Late Pliocene part of the GFF, particularly where it prograded on to the Western Platform, displays classic clinoform profiles, with over steepening having resulted in mass-failure of paleoslopes. Major degradation of the shelf edge and slope occurred during the Early Pleistocene, reflecting a change in the calibre and flux of sediment sourced to the continental margin. Detailed examination of part of the GFF not significantly affected by mass-failure indicates that small-scale channel levee and overbank deposits dominate slope deposition, while basin floor deposits are characterised by slope-disconnected muddy and silty basin floor fans, with little lateral continuity between systems. In a sequence stratigraphic context, many of the dominant components of each seismic unit (slumps, fans, and channel-levee complexes) were deposited during the falling (RST) and low (LST) sea level parts of a relative sea level cycle, resulting in highly asymmetric sequences. While the GFF is considered to have minor reservoir potential in terms of containing sandstone-dominated stratigraphic traps, it does afford the opportunity to study in detail how deep-water clastic systems evolved in response to the various factors that control depositional architectures, particularly in a rapidly prograding muddy continenĀ¬tal margin system

    New insights into the condensed nature and stratigraphic significance of the Late Neogene Ariki Formation, Taranaki Basin

    Get PDF
    The Ariki Formation is a distinctive Late Miocene ā€“ Early Pliocene marl facies rich in planktic foraminifera, reaching thicknesses in the range 70 - 109 m in most exploration holes drilled into the Western Platform northwest of Taranaki Peninsula. In Awatea-1 and Mangaa-1 in the Northern Graben, however, there are two marl units separated by the Mangaa ā€œBā€ Sands. The lower unit has the same upper Tongaporutuan and Kapitean age as the lower part of the marl on the Western Platform, and the upper marl has an Upper Opoitian - Waipipian age, similar to the upper part of the Ariki Formation on the platform. In other holes located on the margins of the graben there can be one thin marly horizon, which usually correlates with the upper marl unit in Awatea-1 and Mangaa-1. The presence of two marly units in the Northern Graben, which are probably amalgamated on the western Platform, suggests two periods of late Neogene condensed sedimentation in northern Taranaki Basin arising from siliciclastic sediment starvation, separated by a period of submarine fan accumulation (Mangaa ā€˜Bā€™ sands) following subsidence of the Northern Graben. We attribute the initial interval of marl accumulation mainly to a marked landward shift in the position of coastal onlap in central and southern Taranaki and in the region east of the Taranaki Fault Zone (southern King Country and northern Wanganui regions), which effectively shut-off the supply of siliciclastic sediment to northern Taranaki Basin, thereby enabling marl to accumulate. The start of accumulation of the upper part of the Ariki Formation and its marly correlatives in and around the Northern Graben, is attributed to a younger (upper Opoitian) landward shift in the position of coastal onlap, this time involving the formation of the Wanganui Basin depocentre and Toru Trough, which trapped the contemporary siliciclastic sediment being supplied from the south. A lower Opoitian phase of progradation between these two phases of retrogradation led to accumulation of the lower part of the Mangaa Formation (Mangaa ā€™Bā€™ sands), which was limited in its extent to the Northern Graben because bounding normal faults had by then developed sea floor relief precluding mass-emplaced siliciclastic sediment from being deposited on the higher standing Western Platform. The accumulation of Ariki Formation marl in northern Taranaki Basin ended during the mid-Pliocene due to progradation of a thick continental margin wedge (Giant Foresets Formation) across the Northern Graben and Western Platform

    Evolution of the Giant Foresets Formation, northern Taranaki Basin, New Zealand

    Get PDF
    Plio-Pleistocene aggradation and progradation has resulted in the rapid outbuilding of the continental shelf margin, northern Taranaki Basin. Seismic reflection profiles reveal that this outbuilding is characterised by bold clinoforms which offlap in a basinward direction. This stacked succession of clinoforms, collectively termed the Giant Foresets Formation, obtains thicknesses of over 2 km in places, and has had a significant effect on the thermal regime of the region. This integrated study was initiated to document the Late Neogene evolution of this formation, and thereby gain insights on sedimentary distribution patterns, timing of sedimentation, and controls on progradation and aggradation. Latest Miocene extension in the northern Taranaki Basin, related to rotation of the Hikurangi subduction zone, greatly influenced sedimentation patterns in the Pliocene. Palinspastic reconstruction shows that initial extension of the Northern Graben occurred before Giant Foresets Formation sedimentation began. Sediment, sourced from erosion to the east, was preferentially funneled into the newly created Northern Graben during the late Miocene and early Pliocene, while areas to the north and west underwent a period of sediment starvation. During the late Pliocene, and into the Pleistocene, sediment accumulation outpaced graben extension, and by the end of the Mangapanian, the graben was overtopped. During this period, the progradational front associated with the outbuilding of the continental shelf-slope margin advanced northwards. Throughout the Nukumaruan, continuing to the present day, shelf migration was extremely rapid. While at least seven cyclical sea level changes, with an approximate periodicity of 400 ka (fourth-order) have been identified, overall, depths shallowed from dominantly bathyal, to dominantly shelfal

    An integrated biostratigraphy and seismic stratigraphy for the late Neogene continental margin succession in northern Taranaki Basin, New Zealand

    Get PDF
    Our aim has been to develop an integrated biostratigraphy and seismic stratigraphy for the Pliocene and Pleistocene formations (Ariki, Mangaa, Giant Foresets) in northern Taranaki Basin to better understand the evolution of the modern continental margin offshore central-western North Island, New Zealand. Detailed mapping of seismic reflectors in part of the basin, when compared with correlations of late Neogene stage boundaries between 11 well sections, has highlighted crossover between the datasets. To help resolve this issue, the biostratigraphy of the Pliocene-Pleistocene parts of each of four well sections (Arawa-1, Ariki-1, Kora-1, and Wainui-1) has been re-examined using a dense suite of samples. In addition, the biostratigraphy of seven other well sections (Awatea-1, Kahawai-1, Mangaa-1, Taimana-1, Tangaroa-1, Te Kumi-1, and Turi-1) has been re-evaluated. The crossover is partly attributed to a combination of sampling resolution inherent in exploration well sections, the mixed nature of cuttings samples, and the general scarcity of age-diagnostic planktic foraminifera in the late Neogene formations. The achievement of seismic closure suggests that error in the mapping of the seismic reflectors is not a significant source of the uncertainty (crossover). We have developed a workable time-stratigraphic framework by qualitatively weighting the biostratigraphic data in each of the well sections, thereby identifying the parts of particular well sections with the highest resolution microfossil data and the optimal stratigraphic position of stage boundaries with respect to the mapped seismic horizons/seismic units. Hence, it is possible to assign the known numerical ages for these stage boundaries to reflection horizons/seismic units mapped within the basin. We have applied this information to produce a series of isopach maps for successive stage boundaries that help show the sedimentary evolution of the continental margin succession west of central North Island

    Rapid progradation of the Pliocene-Pleistocene continental margin, northern Taranaki Basin, New Zealand, and implications

    Get PDF
    Progradation and aggradation of the modern continental margin in northern Taranaki Basin has resulted in the deposition of a thick and rapidly accumulated Pliocene-Pleistocene sedimentary succession. It includes the predominantly muddy Giant Foresets Formation, and the underlying sandy Mangaa Formation. Investigation of the internal attributes and depositional systems associated with the Giant Foresets Formation suggests that it would provide very little effective reservoir for hydrocarbon accumulations, although it does provide essential seal and overburden properties. While the sand-dominated Mangaa Formation could be a hydrocarbon reservoir, drilling so far has yet to reveal any significant hydrocarbon shows. Undoubtedly the most significant contribution that the Giant Foresets and Mangaa Formations have had on petroleum systems in northern Taranaki Basin is the cumulative effect that rapid and substantial accumulation has had on maturation and migration of hydrocarbons in the underlying formations. Palinspastic restoration of a seismic reflection profile across the Northern Graben, together with isopach mapping of stratigraphic section for biostratigraphic stages, indicates that the thickest part of the Pliocene-Pleistocene succession is along the central axis of the Northern Graben. Deposition of this succession contributed substantially to subsidence within the graben, providing further accommodation for sediment accumulation. Isopach and structure contour maps also reveal the extent to which submarine volcanic massifs were exposed along the axis of the graben and the timing of movement on major faults

    Late Miocene to early Pliocene stratigraphic record in northern Taranaki Basin: Condensed sedimentation ahead of Northern Graben extension and progradation of the modern continental margin

    Get PDF
    The middle Pliocene-Pleistocene progradation of the Giant Foresets Formation in Taranaki Basin built up the modern continental margin offshore from western North Island. The late Miocene to early Pliocene interval preceding this progradation was characterised in northern Taranaki Basin by the accumulation of hemipelagic mudstone (Manganui Formation), volcaniclastic sediments (Mohakatino Formation), and marl (Ariki Formation), all at bathyal depths. The Manganui Formation has generally featureless wireline log signatures and moderate to low amplitude seismic reflection characteristics. Mohakatino Formation is characterised by a sharp decrease in the GR log value at its base, a blocky GR log motif reflecting sandstone packets, and erratic resistivity logs. Seismic profiles show bold laterally continuous reflectors. The Ariki Formation has a distinctive barrel-shaped to blocky GR log motif. This signature is mirrored by the SP log and often by an increase in resistivity values through this interval. The Ariki Formation comprises (calcareous) marl made up of abundant planktic foraminifera, is 109 m thick in Ariki-1, and accumulated over parts of the Western Stable Platform and beneath the fill of the Northern Graben. It indicates condensed sedimentation reflecting the distance of the northern region from the contemporary continental margin to the south

    Certainty equivalence and model uncertainty

    Get PDF
    Simonā€™s and Theilā€™s certainty equivalence property justifies a convenient algorithm for solving dynamic programming problems with quadratic objectives and linear transition laws: first, optimize under perfect foresight, then substitute optimal forecasts for unknown future values. A similar decomposition into separate optimization and forecasting steps prevails when a decision maker wants a decision rule that is robust to model misspecification. Concerns about model misspecification leave the first step of the algorithm intact and affect only the second step of forecasting the future. The decision maker attains robustness by making forecasts with a distorted model that twists probabilities relative to his approximating model. The appropriate twisting emerges from a two-player zero-sum dynamic game.

    Acknowledgement Misspecification in Macroeconomic Theory

    Get PDF
    We explore methods for confronting model misspecification in macroeconomics. We construct dynamic equilibria in which private agents and policy makers recognize that models are approximations. We explore two generalizations of rational expectations equilibria. In one of these equilibria, decision makers use dynamic evolution equations that are imperfect statistical approximations, and in the other misspecification is impossible to detect even from infinite samples of time-series data. In the first of these equilibria, decision rules are tailored to be robust to the allowable statistical discrepancies. Using frequency domain methods, we show that robust decision makers treat model misspecification like time-series econometricians.

    Efficient Estimation of Linear Asset Pricing Models with Moving-Average Errors

    Get PDF
    This paper explores in depth the nature of the conditional moment restrictions implied by log-linear intertemporal capital asset pricing models (ICAPMs) and shows that the generalized instrumental variables (GMM) estimators of these models (as typically implemented in practice) are inefficient. The moment conditions in the presence of temporally aggregated consumption are derived for two log-linear ICAPMs. The first is a continuous time model in which agents maximize expected utility. In the context of this model, we show that there are important asymmetries between the implied moment conditions for infinitely and finitely-lived securities. The second model assumes that agents maximize non-expected utility, and leads to a very similar econometric relation for the return on the wealth portfolio. Then we describe the efficiency bound (greatest lower bound for the asymptotic variances) of the CNN estimators of the preference parameters in these models. In addition, we calculate the efficient CNN estimators that attain this bound. Finally, we assess the gains in precision from using this optimal CNN estimator relative to the commonly used inefficient CMN estimators.

    Robustness

    Get PDF
    The standard theory of decision making under uncertainty advises the decision maker to form a statistical model linking outcomes to decisions and then to choose the optimal distribution of outcomes. This assumes that the decision maker trusts the model completely. But what should a decision maker do if the model cannot be trusted? Lars Hansen and Thomas Sargent, two leading macroeconomists, push the field forward as they set about answering this question. They adapt robust control techniques and apply them to economics. By using this theory to let decision makers acknowledge misspecification in economic modeling, the authors develop applications to a variety of problems in dynamic macroeconomics. Technical, rigorous, and self-contained, this book will be useful for macroeconomists who seek to improve the robustness of decision-making processes.decision-making, uncertainty, statistical models, control techniques, economic modeling, dynamic microeconomics, misspecification
    • ā€¦
    corecore